\qquad

Section 16.3-16.5 Review

Section 16.3 Additional Exercises

1. Calculate

$$
\iiint_{W} f(x, y, z) d V
$$

for $f(x, y, z)=z ; W: x^{2} \leq y \leq 2,0 \leq x \leq 1, x-y \leq z \leq x+y$.
2. Find the volume of the solid in \mathbb{R}^{3} bounded by $y=x^{2}, x=y^{2}, z=x+y+5$, and $z=0$.
3. Describe the domain of integration of

$$
\int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} \int_{0}^{\sqrt{9-x^{2}-y^{2}}} f(x, y, z) d z d y d x
$$

Section 16.3 Additional Exercises

1. Use polar coordinates to find the integral of $f(x, y)=x^{2}+y^{2}$ over the unit circle.
2. Evaluate the following integral by changing to polar coordinates. Be sure to sketch the domain of integration.

$$
\int_{1}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \frac{1}{\sqrt{x^{2}+y^{2}}} d y d x
$$

3. Use spherical coordinates to calculate the triple integral of $f(x, y, z)=y ; x^{2}+y^{2}+z^{2}=1, x, y, z \leq 0$.

Section 16.5 Additional Exercises

1. Numbers X and Y between 0 and 1 are chosen randomly. The joint probability density is $p(x, y)=1$ if $0 \leq x \leq 1$ and $0 \leq y \leq 1$, and $p(x, y)=0$ otherwise. Calculate the probability P that the product $X Y$ is at least $\frac{1}{2}$.
